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Abstract Widespread Late Mesozoic volcanic magmatism in southeastern China is generally thought to
represent products in response to the subduction of paleo-Pacific plate; however, it remains unclear when
this process began to affect the mantle and the related magmatism. Here we present a systematic study on
the source lithology of Late Mesozoic basalts in this area to highlight a link between lithological variations of
mantle and subduction process of paleo-Pacific plate. Late Mesozoic basalts can be subdivided into four
groups based on their erupted ages: 178~172Ma, approximately 150Ma, 137~123Ma, and 109~64Ma. The
primary source lithology of these rocks is pyroxenite rather than peridotite, and this mafic lithology can
be formed by either ancient or young recycled crustal components. Notably, the source lithology of the
approximately 150Ma and 137~123Ma basalts is primarily SiO2-rich pyroxenite, and the former is
carbonated. The discovery of carbonated, SiO2-rich pyroxenite reflects the influence of a recently recycling
event in the mantle. The subduction of paleo-Pacific plate is the most appropriate candidate and can be
responsible for the mantle-derived magmatism after approximately 150Ma in southeastern China. Therefore,
we suggest a paleo-Pacific slab rollback with increased dip angle as a possible model to control the
lithological variations of Late Mesozoic mantle beneath southeastern China.

1. Introduction

Late Mesozoic volcanic magmatism is widespread in southeastern China and is generally attributed to the
subduction of paleo-Pacific plate, although the petrogenesis and associated tectonic models remain
controversial, including the normal subduction model [e.g., Jahn et al., 1990; Klimetz, 1983], the flat-slab
subduction [e.g., Li and Li, 2007], and the subduction with variable angles [e.g., Zhou and Li, 2000; Zhou
et al., 2006]. For the model of subduction with variable angles, approximately 110Ma has been proposed
to correspond to the transformation from low-angle forward to high-angle rollback subduction of the
paleo-Pacific plate [He and Xu, 2012; Meng et al., 2012]. Up to now, we do not know when the subducted
paleo-Pacific plate began to affect the mantle beneath southeastern China and the mantle-derived
magmatism. Because the paleo-Pacific plate has subducted into the mantle, the studies on mantle-derived
basaltic rocks can provide important information on potential interaction process between subducted
plate and the mantle and therefore help us to understand the influence of paleo-Pacific subduction on the
mantle.

Previous studies focus on the geochronology and geochemical compositions of Late Mesozoic basalts (espe-
cially the isotopic compositions) to document the potential genetic relationship between spatial and tem-
poral distributions of basalts and the subduction of paleo-Pacific plate [e.g., Chen et al., 2008; Meng et al.,
2012;Wang et al., 2008, 2003]. However, using isotopes to trace the magmatic process is sometimes difficult
and might be ambiguous because different petrogenetic models can produce similar isotopic compositions
of basalts. Recently, identification of source lithology provides us a new, efficient perspective to constrain the
formation of basaltic magma and understand the characteristics of mantle and have been widely used in the
studies of the oceanic basalts [e.g., Dasgupta et al., 2010; Herzberg, 2006, 2011; Pilet et al., 2008; Sobolev et al.,
2007] and Cenozoic basalts from eastern China [e.g., Wang et al., 2011; Xu et al., 2012a, 2012b; Zeng et al.,
2010, 2011]. Understanding the source lithology of mantle-derived rocks can also help us to constrain the
crustal recycling (e.g., the subduction of oceanic slab) because this process would change the mantle
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lithology. However, the source lithology
for LateMesozoicbasalts in southeastern
China is stillpoorlyunderstood,andaddi-
tional work is required before we can
properly assess the genesis of these
basalts. In this study, we show that the
lithological variations of mantle source
for Late Mesozoic basalts from south-
eastern China are related to the subduc-
tion of paleo-Pacific plate, which
establishes a link between the evolution
of themantle sourceandthe tectonichis-
tory of southeastern China during the
Late Mesozoic.

2. Compositional Variations in
Late Mesozoic Basalts

According to the nomenclature of Le
Bas et al. [1986], Late Mesozoic mafic
volcanic rocks from southeastern China
are classified as basalts, trachybasalts,
and basaltic andesites, with minor sam-
ples plotting in the area of basanites
and basaltic trachyandesites (Figure S1
in the supporting information). Here
we compiled geochemical data of
these mafic rocks from southeastern
China (Table S1 in the supporting infor-
mation) and subdivided them into four
groups based on their erupted ages:
178~172Ma, approximately 150Ma,
137~123Ma, and 109~64Ma (Figure
S2). Most mafic rocks in southeastern
China show continuous variations in

major element compositions, except for the approximately 150Ma Daoxian basalts. Daoxian basalts have
obviously lower Al2O3, TiO2, and Na2O contents and higher MgO contents and higher CaO/Al2O3 ratios than
other mafic rocks (Figure 1a; others not shown). Additionally, Daoxian basalts also show significantly higher
Ni and Cr contents than other mafic rocks (Figure 1b; MgO versus Cr not shown). In a primitive-mantle-
normalized incompatible element diagram (Figure S3), these Daoxian basalts are enriched in large-ion litho-
phile elements and light rare earth elements, with significantly positive Ba and negative Nb-Ta, Zr-Hf and Ti
anomalies (Ti/Ti* = 0.15–0.23; Hf/Hf* = 0.21–0.38).

3. Variations of Source Lithologies for Late Mesozoic Basalts

When crustal materials (i.e., oceanic crust) are subducted into the mantle, these mafic rocks transform into
SiO2-oversaturated eclogites. Such eclogite may melt first and produce residues of silica-deficient eclogites
[Hirschmann et al., 2003; Kogiso et al., 2003; Pertermann and Hirschmann, 2003a, 2003b; Yaxley and Green,
1998]. In addition to these subducted mafic lithologies, the carbonate minerals, sequestered in oceanic crust
by hydrothermal alteration, can also be introduced into themantle [Alt and Teagle, 1999; Jarrard, 2003], based
on the experimental solidus of carbonated eclogite [Dasgupta et al., 2004; Hammouda, 2003] and the average
subduction geotherm [Peacock, 2003; van Keken et al., 2002]. Therefore, carbonated eclogite would be pre-
sent in the upper mantle or even in the transition zone (or lower mantle) on account of oceanic slab subduc-
tion, and for the latter, carbonate would be present locally in oxidized domains. However, carbonated

Figure 1. Variations in (a) CaO/Al2O3 and (b) Ni versus MgO for the Late
Mesozoic basalts in southeastern China. Data for Late Mesozoic basalts
in southeastern China are listed in Table S1 in the supporting information
[Chen et al., 2008; Dai, 2007; Li et al., 2004; Meng et al., 2012; Wang et al.,
2003; Yang et al., 2015]. The green and red lines represent the
fractionation of “ol + pl + opx + cpx” and “ol + cpx,” respectively. The
fractionation of different minerals are calculated by the software
“Petrolog 3” [Danyushevsky and Plechov, 2011], using a calculated primary
melt (07SC10-4) for Hengshan basalts, Rucheng Basin (Table S2), as the
starting composition.
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eclogite delivered to the transition zone or lower mantle may eventually be returned to the upper mantle by
convection. During this process, the solidus of carbonated eclogite [Litasov and Ohtani, 2010] would intersect
the average mantle adiabat [Akaogi et al., 1989] at ~13–15GPa. In this condition, carbonated eclogite is not
stable in the upper part of upper mantle and would release a carbonatitic melt accompanying with the
eclogite in the residue. Such melt would freeze during reactions with the surrounding mantle peridotite
and produce the carbonated peridotite in the mantle [Hammouda, 2003]. Therefore, identifying the mantle
lithologies of Late Mesozoic basalts at different stages can help us to understand the potential influence of
paleo-Pacific plate subduction.

Inorder toassess thepotential source lithologyof LateMesozoicmaficvolcanic rocks,weneed tocalculate their
primarymagma compositions (Table S2), and therefore, we should first evaluate thepossible fractionationpro-
cess for these Mesozoic rocks, using the software “Petrolog 3” [Danyushevsky and Plechov, 2011]. As shown in
Figure1, at thebeginningof fractional crystallization,olivine is the fractionalmineral. The fractionationofolivine
woulddecrease theNi andMgOconcentrations ofmelts because they are compatible in olivine [e.g.,Adamand
Green, 2006]. The CaO/Al2O3 ratios of melts are affected insignificantly during this stage. Then, because of the
presence of clinopyroxene during fractionation, the CaO/Al2O3 ratios of melts are suggested to decrease sig-
nificantly (Figure 1a). Additionally, if the plagioclase and orthopyroxene are removed before clinopyroxene
during fractional crystallization, the CaO/Al2O3 ratios of melts would first increase slightly and then decrease
(Figure 1a). The compatible of Al in plagioclase [e.g., Aigner-Torres et al., 2007] is the primary reason for the
increasingof CaO/Al2O3 ratios during fractionationprocess. Basedon themodelingof fractionationof different
minerals, the correlation between Ni and MgO concentrations of most samples indicates the potential influ-
ence of fractional crystallization of olivine with other minerals (e.g., clinopyroxene or orthopyroxene). The
Daoxian basalts show obviously highMgO (14.5–16.2wt%) and Ni (503–818 ppm) concentrations with a large
portion of olivine grains (almost ~20% [Yang et al., 2015]), strongly suggesting olivine accumulation for these
basalts. Additionally, lackof negative Eu anomalies (Eu/Eu* = 0.96–1.16; not shown) for those sampleswith rela-
tively highMgO concentrations (>7.5wt%) indicates no significant removal of plagioclase. Because Ca is com-
patible (DCa = 1.33–5.31) but Al is incompatible (DAl = 0.26–0.60) in clinopyroxene [Hill et al., 2011], the
fractionation of clinopyroxene can induce markedly decreased CaO/Al2O3 ratio with decreasing MgO content
for magma. Therefore, those samples with relatively high MgO concentrations (>7.5wt %) are also suggested
to undergonegligible fractionation of clinopyroxene (Figure 1a) and are then chosen to be corrected, such that
they are in equilibrium with an olivine composition of Fo90 by adding or subtracting olivine, following Huang
and Frey [2003]: (1) the composition of equilibrium olivine was obtained using KD(Fe

2+/Mg)olivine/melt = 0.3
[Roeder and Emslie, 1970], assuming that 10% of the total iron are Fe3+ in the melt; (2) a more primitive basalt
composition was calculated as a mixture of the basalt and equilibrium olivine in a weight ratio of 99.9:0.1;
and (3) steps (1) and (2) were repeated until calculated equilibrium olivine had a Fo value of 90.

Thecalculatedprimarymagmasofbasalts fromDaoxian(approximately150Ma)haveformedalongthecotectic
L + Cpx +Grt (Figure 2a), indicating that the source lithology of these basalts is SiO2-rich pyroxenite.
Furthermore, comparing to the previousmelting experimental results (Figures 2a and 2b), the source lithology
for Daoxian basalts seems to havebeen carbonated, because carbonated components canprovide higher CaO
concentrations to the melts (Figure 2b). Previous studies on Cenozoic basalts from Shandong Provinces have
summarized the chemical characteristics for those magmas derived from the carbonated source, including
significantly negative anomalies of Zr, Hf, and Ti (i.e., low Ti/Ti* and Hf/Hf* ratios), high Zr/Hf and Ca/Al ratios
[Zeng et al., 2010], which are then verified via the studies on Mg and Zn isotopes of basalts [e.g., Huang et al.,
2015; S.-A. Liu et al., 2016; Tian et al., 2016]. For Daoxian basalts, they show significantly higher CaO/Al2O3

ratios and lower Hf/Hf* and Ti/Ti* ratios (Figure 3), suggesting the possible influence of carbonated compo-
nents in the source. In the primitive-mantle-normalized incompatible element diagram (Figure S3; the primi-
tive mantle values are from McDonough and Sun [1995]), the Daoxian basalts also display significantly
negative anomalies of Zr, Hf, and Ti. Additionally, their Zr/Hf ratios (37.4–50.5) are higher than the value of
chondrite [Anders and Grevesse, 1989]. All these characteristics are accordant with the “carbonatitic finger-
prints.” Therefore, we argue that the carbonated SiO2-rich eclogite/pyroxenite can be an appropriated candi-
date for the source of Daoxian basalts.

By comparison, the primary magmas of those 178~172Ma and 109~64Ma basalts have formed along the
cotectic L +Ol + Cpx +Grt (Figure 2a). In this area, peridotite or SiO2-poor pyroxenite can be the candidate
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of their source lithology. The low CaO
contents (CaO= 6.8–9.9wt %) in pri-
mary magmas for these basalts
(Figure 2b) supports a pyroxenitic resi-
due rather than a peridotitic residue in
the mantle source, because primary
magmas from peridotite at pressures
up to 7GPa have significantly higher
CaO contents (~10wt %), regardless of
the degree of fertility of the peridotite
being melted [Herzberg and Asimow,
2008]. Additionally, they are plotted in
the field of experimental partial melts
of SiO2-poor pyroxenite (Figure 2b),
which also support the proposal of
genesis of SiO2-poor pyroxenite. For
137~123Ma basalts, their source lithol-
ogy seems to be related to SiO2-rich pyr-
oxenite because they have formed
along the cotectic L +Opx +Cpx +Grt
(Figure 2a). However, comparing to the
melting experimental results, they are
plotted far from the SiO2-rich pyroxenite
area (Figures 2b and 2c), which make
their genesis puzzled. Interestingly, they

Figure 2. (a) Projections (mol %) of primary
magmas for Late Mesozoic basalts in
southeastern China from or toward diopside
into the plane Olivine-Quartz-Calcium
Tschermak’s (CATS). The cotectic (L + Ol
+ Cpx + Opx), (L + Opx + Cpx + Grt), (L + Cpx
+ Grt), and (L + Opx + Cpx) constrained by
the pressure (GPa), the thermal divide, and
the area for oceanic crust and mantle
peridotite are from Herzberg [2011]. The
mole percent projection is derived from the
code given by O’Hara [1968]. (b) Variations
of CaO versus MgO of primary magmas for
Late Mesozoic basalts in southeastern China.
The fractionation trend (black arrow) and
the area for primary melts from peridotite at
2–7 GPa (green field) are from Herzberg and
Asimow [2008]. (c) Variations of SiO2 versus
MgO of primary magmas for Late Mesozoic
basalts in southeastern China. Data source
for experimental partial melts of SiO2-rich
and SiO2-poor pyroxenite are after Herzberg
[2011] and Mallik and Dasgupta [2014]. Also
shown are the experimental partial melts of
carbonated SiO2-rich pyroxenite [Gerbode
and Dasgupta, 2010; Kiseeva et al., 2012] and
peridotite [Grove et al., 2013; Walter, 1998].
The primary magma compositions of Late
Mesozoic basalts (MgO> 7.5 wt %; Table S2
in the supporting information) in this study
are calculated by adding olivine, following
Huang and Frey [2003]. Other data sources
are the same as in Figure 1.
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are always plotted in the area between
Daoxianbasalts and178~172Mabasalts.
A possible explanation is that these
137~123Ma basalts originated from a
mixingmantle source. In addition to car-
bonated SiO2-rich pyroxenite derived
from the subducted paleo-Pacific plate,
the SiO2-poor pyroxenite, which repre-
sents the previous component in the
mantle, also participated in the forma-
tion of these basalts.

In summary, we suggest that the
pyroxenite is the principal lithology in
the mantle source of Late Mesozoic
basalts in southeastern China. In com-
paring to a SiO2-poor pyroxenite for
the basalts erupted in 178~172Ma and
109~64Ma, the source of basalts
erupted in approximately 150Ma and
137~123Ma is mostly likely to be the
SiO2-rich pyroxenite (Figure 2).

4. Implication for the
Geodynamics of Paleo-Pacific
Plate Subduction

To further evaluate our speculation on
source lithologies for Late Mesozoic
basalts, we also performed the rare
earth element modeling of mantle melt-
ing with different source lithologies
(Figure 4). The La/Yb and Sm/Yb ratios

of the basalts are controlled by both the mantle source and partial melting process. Based on the calculated
results (Figure 4), we argue that carbonated components play important roles in the formation of these
basalts because the presence of small amounts of carbonated components can increase the La/Yb ratios of
basaltic magmas significantly. Most basalts cannot present the so-called carbonatitic fingerprints because
they are diluted during the high degree of melting. Although we can hardly identify the source lithologies
of samples with highmelting degree (probably with La/Yb< 10), low-degree melting of mantle with different
lithologies will produce melts with different La/Yb and Sm/Yb ratios. For those basalts from Daoxian, only the
melting of carbonated, SiO2-rich pyroxenite can well explain their significantly high La/Yb and Sm/Yb ratios
(Figure 4). The possible reason for higher La/Yb and Sm/Yb ratios of melts from SiO2-rich pyroxenite than
melts from peridotite or SiO2-poor pyroxenite is that the melting residues of SiO2-rich pyroxenite have higher
proportions of garnet, because Yb is strongly compatible in garnet (DYb = 6.5–7.9) during mantle partial melt-
ing [e.g., Green et al., 2000; Zack et al., 1997].

The Late Mesozoic igneous magmatism in southeastern China has long been attributed to the subduction of
the paleo-Pacific plate [e.g., Chen et al., 2008; Jahn, 1974; Jahn et al., 1990; Li and Li, 2007; Li et al., 2014; Zhou
and Li, 2000; Zhou et al., 2006], although the beginning time for the subducted paleo-Pacific plate affecting
the mantle is still ambiguous. In this case, our studies on source lithology of Late Mesozoic basalts provide
here important clues to understand the potential influence of such subducted slab in the mantle. The source
lithology of 178~172Ma basalts is a SiO2-poor pyroxenite (Figure 2), formed from the reaction between
recycled crust-derived melt and nearby peridotite (or carbonated peridotite-derived melt) [Herzberg, 2011;
Mallik and Dasgupta, 2014; Sobolev et al., 2005, 2007]. Such recycled crustal material can be either ancient
or young, and their origin can hardly be distinguished. Then, a carbonated eclogite is proposed in the mantle

Figure 3. Variations in (a) CaO/Al2O3 and (b) Hf/Hf* versus Ti/Ti* for
primary magmas of the Late Mesozoic basalts in southeastern China.
Element anomalies are calculated as follows: Hf/Hf* = HfN/(SmN ×NdN)

0.5

and Ti/Ti* = TiN/(NdN
�0.055 × SmN

0.333 × GdN
0.722). The average values

for carbonatites are based on data for oceanic magnesio-carbonatite from
Cape Verdes [Hoernle et al., 2002]. Data sources are the same as in Figure 1.
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Figure 4. Variations in Sm/Yb versus La/Yb for primary magmas of the Late Mesozoic basalts in southeastern China. Also
shown is the simple batch melting curve calculated for (a) garnet peridotite, (b) SiO2-rich pyroxenite, and (c) SiO2-poor
pyroxenite with or without carbonatite. The black numbers represent the assumed proportion of the carbonatite in the
source, while the colored numbers represent the partial melting degree. The proportion of carbonatite in the astheno-
spheric mantle is suggested to be less than 0.4% based on the study of electrical conductivity [Gaillard et al., 2008], and we
therefore assumed that the proportion of carbonatite ranges from 0% to 0.6% (slightly larger than 0.4%) in order to
understand the potential influence of carbonated components on the Sm/Yb and La/Yb of basaltic melts from different
mantle source. Additionally, during the calculation of SiO2-poor pyroxenite, the proportion of MORB is selected as 80% and
20%, respectively, which can help us to understand the potential influence of increased degree of the reaction between
recycled SiO2-rich pyroxenite and nearby peridotite during the formation of SiO2-poor pyroxenite. Partition coefficients for
La, Sm, and Yb between cpx, grt, and melt during melting of SiO2-rich pyroxenite are taken from Zack et al. [1997]. The
proportions of residual phase (80% cpx and 20% grt) and melting reaction of SiO2-rich pyroxenite (20% cpx and 80% grt)
are assumed to be modal. Partition coefficients for La, Sm, and Yb between ol and melt during melting of garnet peridotite
and SiO2-poor pyroxenite are taken from Zanetti et al. [2004]; partition coefficients for La, Sm, and Yb between cpx, opx, grt,
and melt are taken from Green et al. [2000]. The proportions of residual phase during partial melting of garnet peridotite
(62% ol, 18% cpx, 15% opx, and 5% grt) and SiO2-poor pyroxenite (20% ol, 24% cpx, 54% opx, and 2% grt) are assumed to
be modal. Melting reaction of garnet peridotite (<50% partial melting: 3% ol, 70% cpx, 3% opx, and 24% grt) is afterWalter
[1998]. Melting reaction of SiO2-poor pyroxenite (<18% partial melting: 46% ol, 51% cpx, �3% opx, and 6% grt; 18~35%
partial melting: 44% ol, 73% cpx,�30% opx, and 13% grt) is after Longhi [2002]. The data for depleted MORBmantle (DMM)
and average MORB are fromWorkman and Hart [2005] and Niu et al. [1999]. The average values for carbonatites are based
on data for oceanic magnesio-carbonatite from Cape Verdes [Hoernle et al., 2002]. Data sources are the same as in Figure 1.
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source of approximately 150Ma Daoxian basalts (Figures 2–4). This may indicate that a carbonated, SiO2-rich
material is introduced into the mantle around this period. Such material cannot be the ancient recycled crus-
tal components because the carbonated eclogite cannot be preserved in the upper part of upper mantle dur-
ing ascent based on the solidus of carbonated eclogite [Litasov and Ohtani, 2010] and the average mantle
adiabat [Akaogi et al., 1989]. Therefore, we suggest that the subducted paleo-Pacific plate is the most appro-
priate candidate for such carbonated eclogite. Because rutile is a common accessory phase in the subducted
slab and Nb is highly compatible in rutile [Foley et al., 2000; Klemme et al., 2005], obviously negative anomalies
of Nb for Daoxian basalts (Figure S3) also support the melting of such eclogite with the residue of rutile. In
other words, the subducted plate has reached the area beneath Hunan Province at approximately 150Ma
and is responsible for the mantle-derived magmatism after this period. A mixing, SiO2-rich pyroxenite-
bearing source (Figures 2 and 4) for those 137~123Ma basalts also supports the persistent influence of the
subducted paleo-Pacific plate in the formation of mantle-derived magma, although most carbonatitic finger-
prints might have been diluted by the increased melting degree for these basalts (Figure 4b). Such influence
becomes to be negligible for the 109~64Ma basalts since their source lithology is transformed into the SiO2-
poor pyroxenite in this stage. The lithological variations of mantle can be explained using the model of a
paleo-Pacific slab rollback with increased dip angle, which is consistent with evidence from syenitic, gabbroic,
granitic, and volcanic rocks in southeastern China [He and Xu, 2012; Jiang et al., 2009; L. Liu et al., 2016]. Before
150Ma, the subducted paleo-Pacific slab has not affected the mantle source of Mesozoic rocks and the man-
tle is composed mainly by the peridotite and SiO2-poor pyroxenite; the latter, which has been suggested to
play an important role in the generation of mantle-derived, basaltic magma [e.g., Keshav et al., 2004; Kogiso
and Hirschmann, 2004; Kogiso et al., 2003; Mallik and Dasgupta, 2012, 2013; Pertermann and Hirschmann,
2003a, 2003b; Yaxley and Green, 1998], is mostly likely to be produced by the reaction between ancient
recycled crustal material-derived melt and nearby peridotite [Herzberg, 2011; Sobolev et al., 2005, 2007].
After 150Ma, the subducted paleo-Pacific slab reached the area which approximately corresponds to the
present Hunan Province and begun to affect themantle-derivedmagmatism until 110Ma. Due to the increas-
ing of dip angle for subducted slab induced by the growing gravity [e.g., Niu, 2014], the entire southeastern
China was under back-arc extensional setting after 110Ma [Li and Li, 2007; Lui et al., 2014a, 2014b; Pearce and
Stern, 2006; Zhou et al., 2006], and mantle-derived magma in this period shows the principal affinity of asth-
enospheric mantle again [Meng et al., 2012].
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